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Chapter 1

What is RQube?

1.1 Introduction

Randomisation is a basic procedure in experimental design. Considering the im-

portance of it, it is strange to say, that – except for a few articles in parapsycholog-

ical research – the topic did not receive much attention.

“Every finite symbol string is random under some nontrivial defi-

nitions of randomness.

Every finite symbol string is nonrandom under some nontrivial def-

initions of randomness.”

These paradox conclusions in Gilmore (1989, p. 339) underline the fact, that it

might be worth the effort to consider the reasons of randomisation and the princi-

ples of the process.

1.1.1 Why Randomise Trial Sequences?

There are several reasons to shuffle the items in a trial series. Not all of them can

be satisfied at once. Not all of them are based on the same notion of randomness.

1. Minimise anticipation processes, i.e. minimise predictability.
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2. Minimise habituation effects.

3. Minimise sequence effects.

Predictability

If subjects are able to predict the upcoming event, the relevant processing is not

elicited by the stimulus, but takes place before its presentation.

The common notion of randomness is based on the generating procedure, like

tossing coins. But if you toss a coin and you get nothing but tails (TTTTTTT), you

never would consider this coin to be fair. Nevertheless stochastic tells us, that this

event is as probable as any other event (P(TTTTTTT) = P(THHTHTT)). “[...] it

should be no more surprising to obtain the series with an obvious pattern than to

obtain the one that seems to be random” (Chaitin, 1975, p. 47). However, it is. The

stochastic concept of randomness does not fit the intuitive perception of it (Falk &

Konold, 1998; Bar-Hillel & Wagenaar, 1991). Furthermore, this series is (indeed)

predictable.

Hence, there was a branch developed of mathematics which abandoned a pro-

cess based definition of randomness. It was developed from research on com-

plexity and it emphasises unpredictability as a key quality for a random sequence

(Chaitin, 1975; Gammermann & Vovk, 1999). The less orderly the sequence is, the

greater is its complexity and the less predictable is any element of it. Concern-

ing experimental needs unpredictability often provides a more practical concept

of randomness. To make a series of stimuli patternless and unpredictable is the

principal reason why we randomise it. The subject must not be able to foresee the

upcoming trial – it should be even hard to guess it.

Sequence Effects

Many experimental designs need to control the alternations between different ex-

perimental condition. Viewing an indifferent picture certainly makes another im-

2
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pression, when viewed after a very disgusting picture, than after a funny one. The

appropriate countermeasure is to control the number alternations between exper-

imental conditions.

Habituation

Habituation means that responses elicited by a stimulus (or a class of stimuli) di-

minish in strength with repeated exposures. Rare occurrences of and frequent

alternations are necessary to prevent habituation effects.

1.2 How to Describe “Randomness”

Randomness in our means has often to be described as unpredictability. In sto-

chastics you can toss a dice a hundred times and receive the “1” a hundred times.

Each possible sequence occurs with equal probability. But in experimental psy-

chology we do not want the same treatment to be repeated too often. Common

random numbers generators that are implemented in C++, Visual Basic or in ex-

perimental software like E-PrimeTM often lead to long rows of equal treatment

variables.

Another concept of probability comes from the mathematician Kolmogorov.

Can there be “true” randomness under the laws of physics? He did not assume a

sequence of a hundred “1” to be random, even if they had been generated in a way

that demands such an interpretation (like tossing a dice or a coin). A sequence is

considered to be random, if you cannot guess the following number. But in a

sequence of “1” the successor is easy to foretell. So helps you to minimise

predictability as good as possible. The zero– and first-order restrictions are both

qualified to minimise the predictability.

On the other hand, sometimes are effects of habituation the more sensitive

problem for experimental data. The “Maximum run length” and the “Minimum

distance” are especially qualified to control for habituation effects.

3
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Finally, the first-order restrictions help to minimise repetition effects by equalis-

ing the frequencies of pairs of consecutive trials and by controlling the distribution

of those pairs.

1.2.1 Global Characteristics

Maximum Run Length

The first restriction (QRL) is the number of equal consecutive items. Items are

considered as equal, if they are in the same treatment level. The discrimination

between items and treatments in succession is necessary, because sometimes the

researcher does not want the same item to be repeated, but there is no problem to

repeat the same experimental condition1.

QRL may vary between 1 ≤ QRL ≤ C.

Minimum Distance

Minimum distance specifies the number of items that at least separate two equiv-

alent items. It is only necessary in experiments that strictly need to forbid repe-

titions. The minimum of the Minimum Distance is one: QMD ≥ 1. It means that

repetitions are valid; a value of 2 ensures that there is at least one deviant between

two equivalent items, etc.

Probability of Zero Order

This characteristic (Q0) is defined by the absolute number of occurrences of a treat-

ment level.

The value of Q0 is fixed to Q0 = L/C.

1The letters C and L stand for the number of elements distributed over the sequence, and the

length of the trial series, respectively.

4
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Probability of First Order

The third criterion (Q1) is based on transition frequencies (or probabilities of sec-

ond order). It is undesirable that, for instance, item number four always follows

item number two. The human brain may be adaptive enough, to detect such reg-

ularities and to accommodate to them. The homogeneity index Q1 provided by

is the alpha error of a χ2-test. If the expected (i.e. optimal) frequency of

item-pairs matches the observed frequency the index results to zero and becomes

greater with increasing heterogeneity. It’s maximum value is one. If you are inter-

ested in an algorithm that exactly controls transition frequencies, see Emerson and

Tobias (1995).

Q1 varies between 0 ≤ Q1 ≤ 1, the optimal value is Q∗
1 = 0.00. But be aware

that in most designs it will not be possible to reach that value, since it requires the

fraction (L− 1)/C2 to be an integer solution.

1.2.2 Local Characteristics

Distribution of Zero-order Probability

With the fourth criterion (QD0) we can check, how homogeneously the items are

distributed among the series. It is unwanted that any sequence ends with only

a few alternating items. From our (the authors’) experience in creating stimulus

sequences we know, that this kind of thin out is a common problem. In order to

avoid that, the user can specify a limit of deviation from the optimal distribution.

The used index number QD0 has a range 0 ≤ QD0 ≤ 1 and can be interpreted

as percentage value. The optimal value is Q∗
D0 = 0.00.

Distribution of First-order Probability

The last criterion (QD1) follows is calculated on the same basis as first-order dis-

persion. Accordingly, QD1 varies between 0 ≤ QD1 ≤ 1, the optimal value is

Q∗
D1 = 0.00.

5
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1.2.3 Further Characteristics

For the needs of the “expert randomiser” three further characteristics have been

added to . They are sometimes used in the literature about subjective ran-

domness (Bar-Hillel & Wagenaar, 1991).

Autocorrelation

The autocorrelation is the expected value of the product of a random variable with

a time-shifted version of itself. In other words, any value xi of a sequence is corre-

lated with its follower xi+lag. Hence, it is a test of higher order characteristics of a

quasi-random series.

calculates the all autocorrelations up to a lag of 6 and uses the greatest

value. Qauto varies between 0 ≤ Qauto ≤ 1, the optimal value is Q∗
auto = 0.00.

Runs Test

The Runs test can be used to decide if a data set is from a random process. A run

is a series of equivalent elements. The number of elements within one series is the

length of the run. The Runs test provided by is described by Mood (1940).

If there are too many or too few runs in a series of events, it is not considered to be

random.

The value Qruns is the tail probability of an approximately normal distributed

variable. The longer the sequence, the better the normal approximation. Qruns

varies between 0 ≤ Qruns ≤ 1, the optimal value is Q∗
runs = 0.50.

Standardized Entropy

The idea of randomness in information theory is quite similar to the notion of ran-

domness as complexity. This theoretical connection is the reason why we added a

standardized entropy measure to the list of ’s probability characteristics.
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The standardized entropy QH lies between 0 ≤ QH ≤ 1, the optimal value is

Q∗
H = 1.

1.3 Proposal of Default Values

Every experimental design has its own requirements and therefore it is rather dif-

ficult to propose standard values for each of the five attributes. It is necessary to

reconsider the values and adapt them to the specific context. But nevertheless, a

template may be useful for new users of this program. We generated hundreds of

sequences while developing this program and we used -sequences (and of

its precursors) in several experiments.

These restrictions are partially contradictory. For example, if the maximum run

length (QRL) is set to 1, then it will not be possible to reach a low Q1 that controls

the transition frequencies, because the transition of an item to itself is forbidden.

It is clear, that it is not possible to be strict on all restrictions at once. We came to

the conclusion, that in most cases the distribution restrictions (QD0, QD1) are less

pivotal. At least, unless a very long trial series is needed.

Our experience allows us to set up a useful template. But this is only a proposal.

Your own experiments may vary in their purpose and so may vary the sequential

constraints. If you choose a very complex design they might be inappropriate,

because they are too restrictive. If the constraints become too high, the number of

possible solutions will be reduced to much, and will no be able to find one

of them in an acceptable period of time. Be careful in your choice, do not always

rely on standard values, even if they may be appropriate in most cases.

1. Maximum Run Length: Q̆RL = (L− 1)/C2,

with C being the number (of combinations) of factor levels, and L being the

length of the sequence. In most cases it is not advisable to set QRL = 1. The

subject can be sure, that the same treatment will not be repeated. Further-

more, it seems a little odd to restrict the run length, at all. According to the

7
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gamblers’ fallacy, subjects expect short run lengths. If a sequence is restricted

according to first-order probability, this value may be set to Q̆0, because this

is the maximum possible value of QRL. The advantage of the QRL restriction

is a faster computation speed of .

However, sometimes predictability is not the main reason for randomisation.

If the researcher wants to avoid effects of habituation, instead, QRL may be

set close to 1.

2. Minimum distance: Q̆MD = 1

Usually there will be no need to set QMD to anything else than one, which

means that repetitions are possible. Use higher values if item repetition

causes rapid habituation effects.

3. Probability of zero order: Q̆0 = L/C

This criterion is fixed. It is defined by the number of combinations of factor

levels (C) and the length of the sequence (L). exactly satisfies this

restriction.

4. Probability of first order: Q̆1 ≤ 0.20

The more complex the design, the less important a severely restricted may

Q1 be. We do advise against Q1 = 0.00, which will certainly fail, unless

the length of the list L − 1 can be divided by C2 without remainder. If you

are interested in an algorithm that controls transition frequencies exactly, see

Emerson and Tobias (1995).

5. Distribution of zero-order probability: Q̆D0 ≈ 0.30

It is far more challenging to find reasonable default values for the two dis-

tribution criteria than for the previous three. We already used in a

number of experiments. Based on our experience it is rarely necessary to go

below 0.10. Our proposal is Q̆D0 ≈ 0.30; it may be rough, but adequate in

most cases. If an experiment consists of several short blocks, and each block

8
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has its own -list, you may switch distribution characteristics off.

6. Distribution of first-order probability: Q̆D1 ≈ 0.30

The more complex the design, the less important is it, to set QD1 to a low

value. Since QD1 reflects more complex aspects of the relation between trials

than the zero-order distribution (QD0) does, we assume, that the first-order

distribution may be set a bit lower to a value of Q̆D1 ≈ 0.30. If an experiment

consists of several short blocks, and each block has its own -list, you

may switch distribution characteristics off.
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Chapter 2

How to Use RQube

2.1 The Rationale of RQube

The rationale of is similar to the rationale of the ANOVA. You may also

define factors, each factors has its levels1. Even though the design in may

often differ from your final ANOVA design, both follow the same basic concept.

Three types of elements may be specified in .

1. one factor space or design.

2. up to 21 factors with up to 2 levels each, or 5 factors with 18 levels each. The

maximum number of combinations is set to 87 ≈ 2, 000, 000 (see also table

2.1.2).

3. up to 21 level constraints with up to 2 subsets each, or 5 constraints with up to

18 sets each.

The factor space is the hierarchical superordinate object. It consists of factors

which define the characteristics of the experiment trials. In an attention task e.g.

1One of the aspects of the name is the n-dimensional cube that is formed by the combi-

nation of all factors.
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there is on factor that specifies the presence of noise. In many cases the factors cor-

respond to experimental factors in the ANOVA design, but they may also specify

further characteristics.

The factor space may be circumscribed as a special type of factor. Its levels are

the level combinations of the subordinate factors. In a 3× 4 design the factor space

has 12 levels.

2.1.1 Level Constraints

Using level constraints it is possible to treat several levels of a factor as if they were

equal. They help to accomplish more complex requirements, such as unequal trial

frequencies (see example in section 2.3.3).

Figure 2.1 illustrates an example of how to make use of constraints. It shows

the one factor of a simple Go/Nogo experiment. In this paradigm the subjects has

to press a key as quickly as possible in one part of the trials. (S)he has to omit the

reaction in another part. In order to activate a strong reaction tendency it is quite

common that the subjects shall react on only one third of the trials.

The left side of figure 2.1 shows the common approach of . Each cell

is treated individually. This is - however - not exactly the way to gain a reason-

able result. It may quite easily happen that generates a sequence like this:

2 2 3 3 2 3 3 3 2 2 3 2. cannot know that level 2 and 3 share the

same meaning.

Using level constraints you may create two sets. treats each set exactly

the same way it treats individual levels. This way you may combine the levels 2

and 3 to one new "super-set" and 1 to be the other. Finally, any restriction may be

applied to these two sets.

In summary, controlling the factor prevents that too many stop trials (1) fol-

low in succession. Controlling the level constraint prevents too many go trials in

succession.

12
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Figure 2.1: Level constraints. Left: RQube treats each level individually; right: the two go levels

are handled as if they were equal.

2.1.2 Limitations

Since computer memory is limited does also have it limits. See table 2.1.2

for the possible number of factors and levels. The more factors you design, the less

levels each factor may have (on average). The maximum number of combinations

is set to 87 ≈ 2, 000, 000.

Table 2.1: Maximum possible number of factors and levels (level constraints and sets, respectively).

factors 5 6 7 8 9 10 13 21

levels 18 11 8 6 5 4 3 2

2.2 The Screen Layout

The concept of the graphical user interface (GUI) is a wizard. That wizard guides

you through the steps that are necessary to define a complete design and to start

the computation of trial sequences. For better orientation, all steps of the wiz-

ard are based on one identical layout. This layout comprises three areas of major

interest (from bottom to top):

1. the button bottom (green)

2. the working area (blue)

13
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Figure 2.2: The GUI of displays three areas of major importance: (1) the navigation bar

(red area); (2) the working area (blue); and (3) the button bottom (green).

3. the navigation bar (red area)

The button bottom provides always the same four buttons: “Leave Qube” to

shutdown , “Help” to open the help file you are currently studying, “Back”

to go back one single step, and “Forward” to finish the current step and move on

to the next one. makes sure that you may not press a button that initiates

an action that is not valid in the certain context.

The working area contains all the necessary information the user needs to enter

the data at the current step. The content of this area may change from step to step.

The navigation bar tells the user which step of the design the user is currently

working at. It displays the number of the step (between 1 and 6) and a short

description. This description has the format of a path (similarly windows de-

scribes paths: folder\folder\file). If the wizard steps into a sub-action, the step

description indicates that by the “\” character. Example: one sub-step of defining

the design settings is to add a new factor. This step is described by “3. Define

14
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Design\Add Factor”.

2.3 Examples

2.3.1 Emotional Slides

The first example’s purpose is to explain, how the data is entered within the -

wizard. This example may be found at examples\EmoPictures.qini in your

installation directory.

Figure 2.3: Emotional slides are shown in a random series.

In this first example, pictures of varying affective quality are presented to the

subjects. The pictures belong to three different classes: positive, neutral, and neg-

ative.

The Wizard guides you through the settings. The navigation bar at the top

always shows where you are; in the area on the right you may enter the data.

Firstly, specify a name for the design. This name is needed to identify the de-

sign. It will be used to name all files which generates.

Since a negative picture may have different effects after a positive than after a

15
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negative picture, the transition frequencies are set tightly: first-order probability

Q1 = 0.02. Additionally, the distribution of pairs of consecutive pictures is set to a

low value QD1 = 0.10, in order to obtain a homogeneous distribution.

2.3.2 Flanker-Compatibility-Task

This second section introduces a larger design with two factors. It will explain the

difference between a restrictions that are applied to the whole design, and those

applied to a single factor. This example may be found at examples\ Flanker.qini

in your installation directory.

Figure 2.4: The letters H and K are assigned to the right hand response. The letter S is assigned to a

left hand response. The letter A does never appear as target stimulus and is therefore not associated

with any response.

A simple bimanual choice reaction task was chosen for these purposes. The

well known flanker-task was invented by Eriksen and Eriksen (1974). One target

stimulus is presented in each trial that is flanked by distractor stimuli. According

to the quality of these distractors there are three experimental conditions. The dis-

tractors are assigned to a response that is opposite to the appropriate response; that

means, the same distractor stimuli are used as target in other trial. This condition

is called incompatible (sometimes incongruent). The second condition shows dis-

16
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tractors, that require the same response as the target (again that means, the same

distractor stimuli are used as target in other trial). This condition is called compat-

ible (congruent, respectively). Thirdly, there is a control condition with distractors,

that are not associated with any response. These stimuli are not part of the task

set. This condition is called neutral.

If we now want to set up an flanker-experiment, we need one factor distrac-

tor type with three levels: compatible, neutral, and incompatible. Furthermore,

we need to specify a factor response hand with two levels: right and left. This is

necessary, because the type of reaction varies independently from the experimen-

tal distractor conditions. Since Bertelson (1965) found out that repeated responses

have faster response times, responses have to be randomised. This second factor

response hand can be added and edited just like the first one.

Now, since we have more then one factor, we have to differentiate between the

restrictions set for each factor and those of the whole design. The factors comprise

two and three levels, respectively. The designs number of levels is 2 · 3 = 6. The

restrictions of each factor are only applied to its levels. The sequence is checked for

as if only this one factor existed, any other factor is ignored. Therefore the design

restrictions control the order of the combinations of factor levels.

2.3.3 Nogo-Task

Unfortunately, this feature has not been implemented, yet. Look out for the

version 1.00 of .

This third example introduces the feature of constraints. It is one weakness of

that all factor levels occur with equal frequencies. This weakness (among

others) may be overcome by using constraints, which are exemplified in this sec-

tion. This example may be found at examples\Nogo.qini in your in-

stallation directory.

Using constraints it is possible to treat several levels of a factor as if they were

equal. In Nogo-tasks there is a pre-potent response tendency that has to be in-

17
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Figure 2.5: The NoGo-task: The letters X and O are presented in a random series. Subjects are

instructed to respond to the X and to omit it, when the O appears.

hibited in several “Nogo-trials”. Hence, it is common to have more Go– than

Nogo-trials, in order to strengthen the response tendency. The properties of fac-

tors, however, do not allow unequal frequencies. This may be circumvented by

using a level constraint. You define a factor with three levels. One level represents

the Nogo-trials (nogo) and the other two are Go-trials (go1 and go2 ). Then you

define a constraint that treats go1 and go2 as if they were equal. For example, if

the maximum run length (QRL) of the level constraint is set to 3, any series with

more than 3 go-trials is invalid, irrespective of the fact that go1– and go2 -trials are

intermixed.

Table 2.2: Only three successive Go-trials are valid.

valid go2, go1, go2, nogo, go2, go2, nogo

invalid go2, go2, go2, go1, nogo, go1, go2

A level constraint is defined by a number of sets and the sequence restrictions

(Q) that are applied to those sets. The elements in a set are the combinations of

factor levels (cells) that have to be treated equally.
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Figure 2.6: The fourth wizard page displays the constraints of the design.

You may add constraints on the fourth screen of the wizard (see figure 2.6). A

click on the button "Add Constraint" leads to the constraint editor (see figure 2.7).

The editor displays all combinations of factor levels (cells) of the design. You may

combine any set of cells. To achieve this, click on the according cells in the left list

and provide a name for the set in the input field "Name of Set". To complete this

step click the "»" button. A new set will appear in the right list.

There is one aspect that you have to keep in mind when you set restrictions

for level constraints. If different sets have different item frequencies several re-

strictions become more difficult to handle. If one set occurs twice as frequent as

another set, it is quite obvious that the number of occurrences cannot be equal.

Furthermore, it makes sense to set the maximum run length QRL to the a value

that is at twice as big as the corresponding restriction of the Go-Nogo factor, be-

cause there are twice as many items within one constraint set than within each

level of the Go-Nogo factor. Finally, unequal set frequencies affect all restrictions

that are based on transition frequencies (the probability of first order Q1 and the
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Figure 2.7: The constraint editor.

first-order distribution QD1; also: autocorrelation, runs test). In this example we

simply switch the first-order restrictions off.

2.3.4 Negative Priming

We added the negative priming paradigm to this manual, in order to show that

a solution in is not always obvious, but – nevertheless – possible. We

consider the negative location priming here (for an overview of this paradigm, see

Fox, 1995; May, Kane, & Hasher, 1995). This example may be found at examples\

NegativePriming.qini in your installation directory.

In an negative location priming experiment each trial consists of two kinds of

stimuli. One is the target that informs the subjects about the required reaction,

the other is a distractor stimulus and has to be ignored. These two stimuli are

distributed among (at least) four possible locations on the screen.

The negative priming effect occurs, when the target appears at the same loca-

tion, the distractor was at the trial before; the distractor appears at a previously
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empty location (ignored repetition, IP). In the control condition both stimuli ap-

pear at previously empty locations (see figure 2.8).

Figure 2.8:

When we set this experiment up, it took us some time to find a solution. Ini-

tially, we thought about a two-factor solution. One factor (4 levels) designates the

location of the target and the second (3 levels) the location of the distractor. Unfor-

tunately this does not work. The solution of this problem is not obvious.

The problem can be solved by a two factor -design. The first factor

defines, if the current trial is an ignored repetition or control condition. When it

is ignored repetition, the location of the current target is clear. The experiment

software simply needs to choose the location of the distractor in the previous trial.

In the control condition two locations are available. Therefore, the second factor

defines the position of the distractor stimulus, which may be more left or more

right in the array. It not known, yet, which of the four locations the distractor

will appear at. Again the experiment software has to analyse the previous trial

and to select the two empty locations. The first will be assigned to the distractor,

according to the value of the second -factor, and the other location is left

for the target. Now there is one problem left. The trial sequence does say nothing
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about the first stimulus. The experiment software has to choose a first stimulus

array, maybe by random, maybe in a systematic way (e.g depending on the subject

number).

2.3.5 Mismatch negativity paradigm

The mismatch negativity paradigm was chosen to exemplify the control for habit-

uation effects with . This example may be found at examples\ MMN.qini

in your installation directory.

The design chosen for this example is taken from Näätänen, Pakarinen, Rinne,

and Takegata (2004). The mismatch negativity (MMN) is an electrocortical deflec-

tion, which occurs in response to a change in auditory stimulation. The experiment

described by Näätänen et al. (2004) involves nine different stimuli, one frequent

standard stimulus and eight different deviants (of 5 different classes: pitch, dura-

tion, intensity, sound-source location, interrupted).

The MMN after deviant stimuli is highly sensitive to stimulus repetitions, there-

fore standards and deviants are presented alternatingly. In Näätänen et al. (2004)

blocks of 10 trials had been defined, which comprised 5 standards and 5 deviants.

Since cannot accomplish randomisation in exactly the same way, we chose

the following procedure. Each trial had two sub-trials, the first one presented a

standard stimulus and the second one of the deviants. Doing so, we merely had

to randomise the deviant stimuli. This can be accomplished by a single factor

“deviant” with eight levels: de–/increased pitch, de–/ increased duration, de–/

increased intensity, sound-source location, interrupted.

A “minimum distance” of 2 was selected, to ensure that deviants are not re-

peated. In doing so, there were at least three other stimuli between two equal de-

viants. In order to guarantee a good distribution of all distractors over the whole

experiment the distribution of zero order (QD0) has been set to a relatively low

level QD0 = 0.02.
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2.4 How to implement RQube output in E-Prime and

Presentation

E-Prime

The files created by can easily be implemented in E-Prime experiments. In

you need to choose the “E-Prime compatible” output format.

In E-Prime you just need to copy the following code into an inline-section,

that is located shortly before the list, that should the trials. You have to replace

TrialList by the name of your own list, PATH by the path of the list and STEM

by the leading part of the random lists file name. If you need more information

please refer to your E-Prime documentation.

TrialList.Filename = "PATH\\" + "STEM" +

c.GetAttrib("Subject") + ".qrnd"

TrialList.LoadMethod = ebLoadMethodFile

TrialList.Load

TrialList.Reset

Presentation

has the ability to print Presentation SDL templates. In you need to

choose the “Presentation SDL” output format.

Raw output

Besides the E-Prime and Presentation support, may save a simple text file

with a number in each line that represents one combination of factor levels.
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2.5 The logfile

There is no need to omit a sequence that does not match certain characteristics.

The numerical values of these characteristics may be printed into a log file. The

log file is a tab delimited ascii table. It can easily imported into standard statistic

software (like SPSS, Statistica, SAS, MINITAB, or R).

2.6 How to generate (pseudo–) random numbers

In case the restrictions are tightly set the quality of the RNG is of minor interest.

The built-in RNG in C++ may be selected, because of its computation speed, even

though its performance is poor (Press, Teukolsky, Vetterling, & Flannery, 1992).

If circumstances demand, to loosen the restrictions, the choice of the RNG may

become a crucial issue. Therefore, provides several methods to generate

random numbers.

Three of four available methods are pseudo-RNGs, which means that they com-

pute “random” numbers using a recursive algorithm. These RNGs need a seed

value to start their computations. Equal seeds lead to equal series of random num-

bers. Usually in C++ the time is taken as seed. provides improved seeding

by combining several data (the current time, the position of the mouse pointer

when the latest system message has been processed, etc.)

2.6.1 Built-in RNG

The RNG that is implemented in Borland C++ Builder(TM) is a pseudo random

number generator of the form:

Xj+1 = (aXj + c) mod m (2.1)

With X0 being any seed. This form is called the linear congruential method,

and it is not really a good implementation of it (see Press et al., 1992). Since the
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Table 2.3: Time consumption of the available random number generators. The values are only

approximate. The first column shows the time needed to generate a single random number. The

second column shows how many numbers are generated in one second. These (approximate) values

were obtained on a 3GHz Pentium computer. The third column shows a machine independent

estimate of time consumption. The 1.00 was assigned to the C++ RNG, the values of the other

RNGs are determined relative to the C++ RNG.

Generator Type Time/Number (ms) Numbers/Second Relative Time

Builtin C++ 0.000299 3848 1.00

Mersenne Twister 0.000140 8790 0.47

Crypto-API 0.005015 217 16.76

Beecrypt Wave-In 38.187997 .03 127650.04

Mersenne Twister (section 2.6.2) has better random properties and is even faster,

the built-in RNG should be second quality.

2.6.2 Mersenne Twister

The Mersenne Twister is a generator of pseudo-random numbers with excellent

properties. Its qualities do not only include far better random numbers than the

built-in C++ RNG, it is also faster. According to the authors, the Mersenne Twister

provides a period of 219937 − 1 and equidistribution up to 32-Bit accuracy (Mat-

sumoto & Nishimura, 1998).

2.6.3 Microsoft Cryptography API

Please refer to the description at the MSDN Library

2.6.4 “True” random numbers from Random.org

uses the online service provided by random.org. Random.org is an online

true random number generation service. The true random numbers are generated
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using atmospheric noise.

Because this RNG depends on an online service, the speed of the random num-

ber class depends on the speed of the internet connection.

This RNG depends on an existing internet connection. If you have a firewall,

you must grant access to random.org. Furthermore it needs an Internet

Explorer 3.0 or later. If you have both and the RNG is still not working, contact

your admin or computer centre.

2.6.5 “True” random numbers: Beecrypt Wave-in RNG

The Beecrypt is taken from the cryptography library Beecrypt. It is a random num-

ber generator that reads noise on the sound card microphone port. Hence, it does

provide “true” instead of pseudo random numbers. If you intend to use it, be

aware that this RNG is extremely slow. And please remove any recording devices

from your microphone port.

The performance of this RNG depends on a number of factors, including pro-

cessing power, sound card quality (cheap sound cards will likely produce more

noise), sound card capabilities (sampling rate, sampling depth, number of chan-

nels) among others.

Important: We cannot deliver beecrypt with , because they do not share

the same license. If you want to use it, you need to get the library beecrypt.dll and

store it in the program directory of .
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Frequently asked questions (FAQ)

? I’m not completely happy with my output!

If any information is missing in the output files, you may always use a “find-

and-replace” tool to modify them. There are several freeware tools can replace a

specified text by another in more than just one file, e.g. Emurasofts “Replace in

Files” (http://www.emurasoft.com/replall/index.htm) or the “Handy File Find

and Replace” tool (http://silveragesoftware.com/handytools.html).

? How do I install in Windows?

You need Windows 95/98/ME/NT4/2000/XP: Windows 3.11+win32s will not

work. Your file system must allow long file names (as is likely except perhaps

for some network-mounted systems). Make sure that you have the proper rights.

They you simply may start the setup program, the wizard will guide you through

the available options.

? How do I UNinstall ?

Normally you can do this from the group on the Start Menu or from

the Add/Remove Programs in the Control Panel. However – be honest, you do

not really want to do that?

? Citing
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If you use in a study and this study is going to be published, you are

obliged to cite as follows: In german publications: ? ((?)). RQube (Version

1.03.56). Universität Trier; abgerufen am xx.xx.200x unter: http://rqube.seifseit.de/

In english publications: Seifert, J. & Britz. P. (2007). RQube (Version 1.03.56).

Universität Trier; retrieved xx.xx.200x, from http://rqube.seifseit.de/

Please do not forget to replace download date and version number.

? Does use the Registry?

Yes. The instruction files (*.qini) are associated with the main program.

? What is the Registry?

The windows registry is a large database. Windows stores a lot of information

in that database that it needs to run properly. E.g. the registry "knows" the pro-

gram that windows shall use to open files from a certain type. If a file type shows

an incorrect icon or opens a wrong program, there is a wrong association set in the

registry. associated the instruction files (*.qini) with the main program.

Double clicking on an instruction file starts RQube.

? does not skip the current sequence, even though the timeout has been

reached

computes the complete sequence at first. During computation (only the

restrictions QRL and Q0 are considered). The timeout is checked after the whole

sequence is complete. If it has been reached, skips the current sequence

and tries the next one; if not, the remaining restrictions are checked for.
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Mathematical Background of the

characteristics

At first we have to introduce some variables:

• C: is the complete number of combinations of factor levels realised in the

design. In other words this is the number of cells in the experimental design.

• K: the combination of factor levels of interest.

• nK: the number of occurrences of K in a trial sequence.

• L: the total number of elements of a trial sequence.

• di: the distance between the i-th and the (i + 1)-th occurrence of K, except d0

being the distance between the last and the first element.

• fij: observed frequency of an item-pair (i, j).

• f̂ij: expected frequency of an item-pair (i, j).

Example:

l, m, l, l, K, K, m, K︸ ︷︷ ︸
d2=2

, . . . m, m, K, l

• D: is the mean distance between two elements.
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Furthermore the length of the sequence is given by

L =
nK

∑
i=0

di (4.1)

And the mean distance between two elements is

D =
1

nK
·

nK

∑
i=0

di =
L

nK
(4.2)

4.1 Zero order probability

Probability of first order (Q1) simply means, that each item occurs with equal fre-

quencies. Therefore has to ensure that the number of occurrences exactly

match L
C . If you require unequal frequencies you have to pool several treatment

levels (using constraints) and treat them as if it was one. See section 2.3.3 for an

example.

4.2 First order probability

Given the assumption that all item pairs are equiprobable f̂ij is defined as follows:

f̂ij =
L− 1

n2
K

(4.3)

The χ2 is known as:

χ2 = ∑
( f − f̂ )2

f̂
(4.4)

This results in:

Q1 = p(χ2
d f ) with d f = n2

K − 1 (4.5)

4.3 Distribution of zero-order probability

QD0 describes, how homogeneously the items are distributed in the trial sequence.

What we need for this purpose is an index, that varies between 0 and 1 and
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changes with the distribution of the items. QD0 can be described as squared de-

viation of the inter-item-distances from the optimal mean distances. This squared

deviation is standardized by its minimum and maximum possible value.

QD0 is defined as the standardized squared deviation of the distances between

the occurrences of K. The squared deviation:

nK

∑
i=1

(di − D)2 (4.6)

⇔
nK

∑
i=0

(d2
i − 2diD + D2)

⇔
nK

∑
i=0

d2
i −

nK

∑
i=1

2diD +
nK

∑
i=1

D2

⇔
nK

∑
i=0

d2
i − 2D

nK

∑
i=1

di + nKD2

because of (2) follows:

⇔
nK

∑
i=0

d2
i − 2D · DnK + nKD2

⇔
nK

∑
i=0

d2
i − nKD2 (4.7)

The maximum possible value of equation (4.7) is:

Qmax
D0 = (nK − 1) + (L− nK + 1)2 − L2/nK (4.8)

From (4.7) and (4.8) follows:

QD′ =
∑nK

i=1 d2
i − nKD2

(nK − 1) + (L− nK + 1)2 − L2/nK
(4.9)

In the following we will show, how the Qmax
D0 is derived. The problem can be

described geometrically (see figure 4.3). The di form a vector ~d = (d1, d2, ..., dnK)

in an nK-dimensional space. Since all di are dependent from each other (di =

L−∑j 6=i dj) all possible vectors ~d form a plane E with nK − 1 dimension. E can be

written as:

E : ~d =~b1 + [λ2nK(~b2 −~b1)] + . . . + [λnK nK(~bnK −~b1)] (4.10)
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Figure 4.1: Illustration of the geometrical interpretation of QD0 for the 2-dimensional case. The

dots mark the possible points in the plane E, since all di are integer variables.

with bi being the basis vectors and λi being an arbitrary value.

The vector~e = (1, 1, . . . , 1) can be shown to be orthogonal to E (~e ⊥ E). Any of

the complanar vectors~bi −~b1 is orthogonal the~e:

cos(φ) =
~e · nK[~bi −~b1]
|~e||nK[~bi −~b1]|

=
−nK + nK
√

nK

√
2n2

K

= 0

⇒ φ = 90◦ (4.11)

The angle α can be calculated by

sin α =
~d~e
|~d||~e|

(4.12)
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Therefore the length of the vector ~d is

|~d| =
~d~e

cos α|~e|

= ∑i(diei)
cos α|~e| (ei = 1)

= ∑i(di)
cos α|~e| (4.13)

The length of a vector ~d can also be written as follows

|~d| =
√

nK

∑
i=1

d2
i (4.14)

When we combine the formulae (4.7), (4.14) and (4.13) the squared deviations

can also be calculated by

nK

∑
i=1

(di − D)2 =
nK

∑
i=1

d2
i − nKD2 = |~d|2 − nKD2

=
[

∑i(di)
cos α|~e|

]2

− nKD2 (4.15)

We know that ∑i(di) is the length L of our trial sequence which is constant.

Furthermore |~e| is constant (|~e| =
√

nK). So the length of ~d in equation (4.13) de-

pends only on the sin α. |~d| becomes greater with sin α becoming smaller. And

because −45◦ ≤ α ≤ +45◦ it can be concluded that the sum of the squared devi-

ations becomes smallest, when its vector is orthogonal to E. And the sum of the

squared deviations becomes greater with the deviation of α from 0◦. Its maximum

is reached at ±45◦. Furthermore the term −nKD2 is also a constant. This leads

to the conclusion that ∑nK
i=1(di − D)2 reaches its minimum with ~d ⊥ E or ~d||~e (i.e.

~d = const. ·~e). In other words, the sum of squared deviations is minimal, when all

di are equal. The more the di differ from each other, the bigger the angle α becomes

and so does the sum of squared deviations. It reaches its maximum when all di

equal to one except of one that equals to L− nK + 1.

From this it follows that:
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nK

∑
i=0

d2
i − nKD2 =

nK

∑
i=1

12 + (L− nK + 1)2 − nKD2

= (nK − 1) + (L− nK + 1)2 − nKD2

= (nK − 1) + (L− nK + 1)2 − L2/nK (4.16)

Figure 4.2: The cosine function peaks at a value of 0: cos(0) = 1.

4.4 Distribution of first-order probability

The logic of the first-order distribution is equal to the zero-order distribution (see

previous section).

4.5 Runs test

The mathematical background of the runs test is found in Mood (1940).
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4.6 Autocorrelation

The auto-correlation is computed as follows:

rl =

nK−l

∑
i=1

(xi − x̄)(xi+l − x̄)

Var(x)
(4.17)

with l being the current lag. Qauto is defined as:

Qauto =
6

max
l=1

(rl) (4.18)

4.7 Standardized entropy

The entropy is defined as follows (Shannon, 1948):

H = ∑ P(x) · log2[P(x)] (4.19)

To receive a characteristic with a fixed range of values, the entropy is divided

by the maximum possible entropy.

Qin f o =
2

max
l=1

Hl
Hl,max

(4.20)
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Appendix A

Default values of restrictions

Table A.1: Default values of the restrictions in Qube.

Default Default Optimal

Symbol status value (Q̆) Min. Max. value (Q∗)

Maximum run length QRL on L− 1/C2 1 C –

Minimum distance QMD off 1 1 C –

Zero-order probability Q0 on L/C L/C L/C 0

First-order probability Q1 on 0.2 0 1 0

Distribution of zero order QD0 on 0.30 0 1 0

Distribution of first order QD1 off 0.30 0 1 0

Autocorrelation Qauto off 0.20 0 1 0

Runs test Qruns off – 0 1 0.5

Standardized entropy QH off 0.8 0 1 1
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Appendix B

Commented instruction file

Below is an example listed that explains the structure of ’s instruction files,

though we do not recommended that anyone edits these files. The instruc-

tion files are simple text files without any formatting options. Any formatting here

is only done to improve readability. Comments are in printed Times, the instruc-

tions are in Typewriter style. treats any strings case-insensitive.

; This file was generated by RQube

; please do not edit only when you know, what you are doing

[GENERAL]

NUMBEROFTRIALS=450

EXPNAME=ERIKSONSREVENGE points to design section (see below)

HOWMANY=20 sequence files from 0 to 19 will be

TARGETPATH= where to write those files

TIMEOUT= how long should computation of a single

list be tried

TRYOUT= how often should computation be tried

RNG= Random number generator (0 = Built-in; 1

= Mersenne Twister; 2 = Microsoft Crypto-

API; 3 = BeeCrypt)
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OUTPUTSTYLE= 0 = raw data; 1 = E-Prime compatible; 2 =

Presentation SDL-template

[ERIKSONSREVENGE] General design named Erikson’s Revenge

FACTORCOUNT=3

FACTOR01=DISTRACTOR Factors and their names

FACTOR02=RESPONSEHAND each has its own section below

CONSTRAINTCOUNT=1

CONSTRAINT01=NONSENSE Level constraints and their names

The criteria below are computed on the basis of combinations of factor levels.

Any identifier of a RQube-restriction may occur here. If it does not,

the restriction is not applied here.

Q0=5 Maximum run length

MINDIST=1 Minimum distance

Q1=75 0. order probability

Q2= 1. order probability

Q3= distribution of 0. order

Q4= distribution of 1. order

[DISTRACTOR] Factor: Distractor

NUMBEROFLEVELS=3 Number of levels

LEVELLABEL01=incompatible Factor levels and their identifiers

LEVELLABEL02=undefined

LEVELLABEL03=compatible

The criteria below are computed on the basis of factor levels.

Any identifier of a RQube-restriction may occur here.

If it does not, the restriction is not applied to this factor.

Q0=5

MINDIST=1

Q1=150 = NUMBEROFTRIALS/NUMBEROFLEVELS

Do not edit any other value here.

Q2=

Q3=
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Q4=

[RESPONSEHAND] Factor: response hand

NUMBEROFLEVELS=2 .

LEVELLABEL01=R .

LEVELLABEL02=L .

Q0=5

Q1=225 = NumberOfTrials/NumberOfLevels

Do not edit any other value here.

Q2=

Q3=

Q4=

[NONSENSE] A level constraint; it does not make any

sense here, it is just an example.

NUMBEROFSETS=4

SETLABEL01=S1

SETLABEL02=S2

SETLABEL03=S3

SETLABEL04=S4

SET01=0,1 the indices of the cells in each set (comma

separated)

SET02=2,3

SET03=4

SET04=5

Q0=6

Q1=75 equals Q1 of the factor space

Q2=-0.10 negative value: Q2 has been switched off

RUNS=0.15

[LOGFILE]

Q0=0 1 = print on; 0 = print off

Q1=0

Q2=1
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Q3=1

Q4=1

AUTOCORR=1

RUNS=1

ENTROPY=1
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Appendix C

Error messages

The list below shows the error codes and messages fed back by the kernel of

. Usually, you should not see one of those errors, since the GUI has to

preent these kinds of errors before they occur.

0 No errors

Internal errors

0xC401 Invalid session handle

0xC402 No trials left in this design

0xC403 Number of trials does not fit to the design

0xC404 This error code is not used by Qube

0xC405 Cannot open additional Qube session

0xC406 Cannot initialize random number generator (RNG)

Output errors

0xD001 Cannot open/ create file

Initialization errors

0xC801 Invalid number of levels (too few or too many)

0xC802 Invalid number of factors (too few or too many)

0xC803 Invalid number of trials (too few or too many)

0xC804 Number of cells exceeds maximum
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0xC805 Invalid number of sets (too few or too many)

0xC806 No parameter file specified

0xC807 Number of levels does not fit numerb of trials

0xC808 Constraint has an invalid set definition

0xC80A Restriction “Q1” is not valid

0xC80B “Q1” cannot be disabled

0xC80C The selected random number generator (RNG) cannot

be initialized. Try another one.

Unspecified errors

0xD801 An unspecified error has occurred

0xD802 Unspecified error - Exit is the only option

0xD803 Unspecified error when closing kernel

0xD804 Unspecified error when computing sequence

0xD805 Unspecified error when starting computation

0xD806 Unspecified error when reading parameter file

0xD807 Unspecified error when initializing kernel
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